Smart Data Analytics: Jede gewonnene Minute bedeutet ein zusätzliches Fahrzeug

Seite: 2/3

Anbieter zum Thema

Prädiktive Instandhaltung im Karosseriebau

Besonders großes Potential bieten Smart Data Analytics Anwendungen für die Erhöhung der Verfügbarkeit von Produktionsanlagen und -maschinen in den hochautomatisierten Fertigungsbereichen. Eine möglichst präzise Vorhersage, wann ein Ausfall droht, hilft ungeplante Anlagenstillstände weitgehend zu vermeiden. Auf Grundlage dieser Prognose können die Mitarbeiter der Instandhaltung einen Wartungseingriff gezielt planen, um dadurch Zeiten des Anlagenstillstands auf ein absolutes Minimum zu begrenzen.

Diese sogenannte prädiktive Instandhaltung wird erst durch die intelligente Analyse einer großen Zahl realer Produktionsdaten, Sensordaten oder Prozessdaten möglich: Deren zielgerichtete Analyse erlaubt es, den optimalen Zeitpunkt für den Wechsel von Verschleißteilen in der Produktion zu bestimmen. Erfolgt dieser Wechsel zu spät, könnte ein Produktionsstillstand drohen, erfolgt er zu früh, werden wertvolle Ressourcen verschwendet.

Die früher übliche, rein vorbeugende Instandhaltung konnte sich mangels Datenbasis nicht am tatsächlichen Verschleiß orientieren. Diese Methode erforderte eine Art Sicherheitspolster für den Wechselzeitpunkt und konnte doch unerwartete Ausfälle nicht erkennen.

Datenbasierte Lösungen zur prädiktiven Instandhaltung kommen an verschiedenen Stellen im Karosseriebau zum Einsatz. Sie ermöglichen die Vorhersage von entstehendem Getriebe- oder Bremsverschleiß von Robotern. An den Schweißzangen signalisieren Sensoren rechtzeitig, wann Fehler oder Qualitätsprobleme auftreten würden. Auch die Zuverlässigkeit elektrischer Antriebe verschiedenster Anlagen wie Lifts und Drehtische profitiert von einer engmaschigen Sensorüberwachung.

Roboter und Steuerungstechnik sind von Haus aus mit der erforderlichen Sensorik ausgerüstet. Mitarbeiter der Instandhaltung ziehen aus diesen Daten Rückschlüsse zu Wartungsbedarfen. Bisherige Auswertungen zur prädiktiven Instandhaltung belegen klar ihren Nutzen für einen zuverlässigen Betrieb.

Online Prozessregelung: Stabilere Prozesse für bessere Qualität

Auf dem renommierten Surcar-Kongress in Cannes erhielt die BMW Group den Prix de la Technique 2017 für ihr Konzept zur umfassenden Digitalisierung ihrer Lackiererei im neuen Werk San Luis Potosí. Dieses Werk wird 2019 die Serienproduktion aufnehmen. Bereits heute überwachen in den Lackierereien der BMW Group Sensoren permanent die automatisierten Fertigungsprozesse. Intelligent vernetzte Systeme erhöhen die Stabilität in den Prozessabläufen, ermöglichen eine prädiktive Instandhaltung und sollen ein Höchstmaß an Qualität für die Kunden erzeugen.

Die Online Prozessregelung kombiniert die Stärken einer Algorithmen basierten Analyse großer Datenmengen mit der Erfahrung der Mitarbeiter: Der Mensch kann seine Rolle als Gestalter der Fertigungsprozesse noch besser ausfüllen, da die Technik reale Produktionsdaten sortiert und bestmöglich vorstrukturiert. Fehlerpotenziale können rechtzeitig erkannt und Nacharbeit vermieden werden.

(ID:44925453)