Anbieter zum Thema
Konzipiert für das digitale Cockpit
Software gehört nicht nur zu den größten Investitionsposten für Tier-1-Hersteller und -OEMs, sondern ist auch der Eckpfeiler für Alleinstellungsmerkmale. Vor diesem Hintergrund ergänzt die „Jacinto 6 Plus“-Architektur von TI die robuste und bewährte „Jacinto 6“-Architektur durch leistungsfähigere Cores und zusätzliche Features. Diese Kombination kommt den Zielsetzungen von TI entgegen, einerseits die existierenden Software-Investitionen zu schützen und andererseits dem in der Industrie herrschenden Trend zu vermehrter Integration nachzukommen, ohne Kompromisse an der Leistungsfähigkeit und der Markteinführungszeit zu verlangen. Zur Skalierbarkeit des „Jacinto 6 Plus“:
- Sie erleichtert die Wiederverwendung vorhandener Hard- und Software, wobei sich die notwendigen Änderungen auf System-Upgrades beschränken, um externe Kameras anzubinden und zusätzliche Displays mit den Prozessoren zu verbinden.
- Sie ermöglicht Head-Unit-Features und künftige Analyse- und Bildmanipulations-Funktionen sowie Fähigkeiten für mehrere Bereiche und Betriebssysteme.
- Sie gibt Ihnen die Möglichkeit, für den Infotainment-, Fahrzeug- und Fahrer-Bereich mehr Features in einem einzigen System-on-Chip (SoC) zu integrieren – kombiniert mit einer robusten Hypervisor-Implementierung, die das Teilen mehrerer virtueller Maschinen und GPUs (Graphics Processor Unit) unterstützt.
- Sie ermöglicht eine kürzere Markteinführungszeit durch die Nutzung der robusten, bewährten Architektur des „Jacinto 6“ einschließlich DSP- und EVE-Beschleunigern (Embedded Vision Engine).
- Sie unterstützt die Innovation zu niedrigeren Kosten durch die Integration mehrerer neuer Internet-Protokolle (IP), darunter Raw Camera Image Signal Processor- (ISP) und Camera Serial Interface (CSI)-2-Ports sowie Controller Area Network-Flexible Data Rate (CAN-FD). Dies ermöglicht die Senkung des Aufwands an elektronischen Bauelementen und unterstützt die kommende Interface-Generation.
„Jacinto 6 Plus“-SoCs beruhen auf einer Dual-Package-Strategie. Bestehende „Jacinto 6“-Kunden können problemlos ihre aktuelle Hardware aufrüsten und den System-Bauteileaufwand optimieren, während sie Kameras und Surround-View-Funktionen mit minimalen Auswirkungen auf die Hardware einbinden, oder sie nutzen in vollem Umfang die Fähigkeiten und die Leistungsfähigkeit des „Jacinto 6 Plus“ für Head-up-Displays (HUDs) mit AR-Fähigkeit (Augmented Reality). Das „Jacinto 6 Plus“-SoC ist außerdem die bevorzugte Lösung für Designer, die bisher noch nicht mit der „Jacinto 6“-Plattform gearbeitet haben und eine zuverlässige, robuste und bewährte Technologie für das Design digitaler Cockpitsysteme wünschen, ohne hinsichtlich der Markteinführungszeit einen Rückschritt machen zu müssen. Möglich ist dies dank der ausgereiften Hard- und Softwareumgebung und der Reichhaltigkeit des „Jacinto“-Ökosystems.
Das integrierte digitale Cockpit
Schon bald werden sich die Autofahrer nicht mehr nur auf traditionelle Instrumentencluster und die Mittelkonsole verlassen, um verlässliche Fahrzeug- und Sicherheitsinformationen zu bekommen und auf Medien und Landkarten zuzugreifen. Vielmehr werden sie auch die folgenden weiteren Lösungen erwarten:
- Komplexere Inhalte wie etwa umfangreiche Auswahl an Medien von beliebigen Quellen, 3D-Navigation, ADAS- und AR-Ansichten mit der Fähigkeit zum Morphing von Größe, Form und Farbe abhängig von der jeweils anstehenden Aufgabe. All dies in hoher Auflösung eingeblendet in mehrere Displays.
- Ergonomie, um sich vermehrt auf das Verkehrsgeschehen konzentrieren zu können, darunter beispielsweise die HUD-Technik zur Darstellung wichtiger Fahrinformationen direkt im Sichtfeld.
- Relevante Informationen und Sicherheits-Inhalte für die jeweilige Fahrsituation, dargestellt in der Mitte des Sichtfelds, um den Weg für das autonome Fahren zu ebnen.
Jede neue Technik, die OEMs einzusetzen beabsichtigen, muss einerseits den Qualitäts- und Zuverlässigkeitsnormen des Automobilbereichs entsprechen (z. B. AECQ100, ISO 26262, ASIL-B usw.) und andererseits strikten Budgevorgaben gerecht werden. Parallel dazu werden die Autofahrer bestrebt sein, für weniger Geld mehr zu bekommen. Eine vermehrte Wahrnehmung des Straßenzustands und die Überwachung eines jeden Winkels im Fahrzeug werden zum Standard werden – ebenso wie eine reichhaltigere Nutzererfahrung durch die Übertragung der immer stärker vernetzten Lebensstile auf das Cockpit.
Diese Anforderungen werden die Notwendigkeit der ECU-Integration verstärken, um die ab einem gewissen Punkt kein Weg mehr herumführt, wenn man die gewünschten Features zu vertretbaren Kosten implementieren will. Ein speziell hergestelltes SoC, das die Automotive-typischen Qualifikations- und Sicherheitsanforderungen erfüllt, ermöglicht nicht nur skalierbare Software und mehr Effizienz bei der Forschung und Entwicklung, sondern sorgt auch für die notwendige Performance und Differenzierung, die immer mehr Bedeutung dafür bekommt, die Markttrends in der Automobilindustrie zu unterstützen.
Die wirkliche Herausforderung wird nicht einfach nur darin bestehen, auf einem Universal-Mikroprozessor mehr Dhrystone-MIPS (Million Instructions Per Second) und auf einer GPU mehr Giga Floating-Point Operations Per Second (GFLOPS) zu erreichen oder verbesserte Multimedia-Fähigkeiten zu erzielen, sondern das richtige Gleichgewicht zwischen diesen Eckdaten und folgenden Punkten zu finden:
- Unterstützung für komplexe Anwendungsfälle mit Fähigkeiten für mehrere Betriebssysteme, mehrere Bereiche und mehrere Displays.
- Erreichen der notwendigen Isolation zwischen den Bereichen gemäß den verschiedenen Automotive Safety Integrity Levels (ASILs) und Sicherheitsanforderungen.
- Sichtanalyse-Fähigkeiten von SoCs, die auf ein und derselben Softwareplattform vom Einstiegs- bis zum Premium-Niveau skalierbar sein müssen.
Damit diese Kombination erreichbar ist, bedarf es nicht nur einfach einer Anhebung der Performance des Bausteins. Gefragt sind vielmehr neu definierte, angepasste Architekturen zur Unterstützung der immer anspruchsvoller werdenden Anwendungsfälle im integrierten digitalen Cockpit. Diese Anforderungen werden in die Vision und die Strategie von TI eingebunden, um die Zukunft der SoC-Bausteine für das digitale Auto-Cockpit zu gestalten.
:quality(80)/images.vogel.de/vogelonline/bdb/1362200/1362296/original.jpg)
Die spezifischen Anforderungen von E-Fahrzeug-Ladestationen
* Cyril Clocher ist Marketing Manager im Bereich Automotive Processors bei Texas Instruments
(ID:45182711)